Substituent Effects on the Structures and Energies of Isocyanates and Imines by Ab Initio Molecular Orbital Calculations

Michael A. McAllister and Thomas T. Tidwell*
Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1

Abstract

The energies and geometries of substituted isocyanates $\mathrm{RN}=\mathrm{C}=\mathrm{O}$ and imines $\mathrm{RN}=\mathrm{CH}_{2}$ have been obtained by ab initio MP2/6-31G*//MP2/6-31G* calculations. For imines the stabilization energies $S E=\Delta E$ for the isodesmic exchange reaction of the substituent with alkenes show there is a very large energetic preference for electropositive substituents to be substituted on the imine compared with the alkene, with a linear correlation of SE with group electronegativities χ_{BE}. For isocyanates the SE values derived by comparison with either alkenes or imines give excellent correlations with χ_{BE} values. The geometries of both imines and isocyanates bearing strongly electropositive substituents are linear, and this is attributed to charge repulsions and a preference for sp hybridization at nitrogen when this atom is bonded to an electropositive group. The much higher dependence of substituent stabilization SE of isocyanates compared with other cumulenes is attributed to the greater polar character of the isocyanates, and a linear relationship between the HOMO coefficient at the substituted atom of the cumulene and the slope of the dependence of SE on $\chi_{\text {BE }}$ was found. Atomic charges calculated for these substrates by the natural bond orbital (NBO) method give distinctly better correlations with χ_{BE} values than do charges calculated by the Mulliken method. Calculated and experimental isocyanate IR asymmetric stretching frequencies are in reasonable agreement, but the effects of substituents on the isocyanate frequencies differ from those for ketenes.

The study of substituent effects on molecules containing the fundamental functional groups of organic chemistry by the use of $a b$ initio molecular orbital calculations has been the subject of intense interest in recent years, both by our group ${ }^{1}$ and many others. ${ }^{2}$ Our attention has concentrated on the cumulenes, including ketenes, ${ }^{1 a-d}$ allenes, ${ }^{1 a, d}$ and diazomethanes, ${ }^{1 d, e}$ as well as cyclopropenes ${ }^{1 d}$ and diazirines, ${ }^{1 d, e}$ which are respectively isomeric with the latter two, and alkenes as reference compounds. ${ }^{1 a, d}$ Others have recently reported studies on alkanes, ${ }^{2 a, b}$ alkenes, ${ }^{2 b, c}$ alkynes, ${ }^{2 c}$ and carbonyl compounds, ${ }^{2 d}$ as well as α-substituted carbocations ${ }^{2 e}$ and carbanions. ${ }^{2 f}$

The present manuscript deals with the isocyanates, an important class whose structures and energies have not previously been the subject of a systematic theoretical study, although various individual compounds have been examined by calculation ${ }^{3}$ and experiment. ${ }^{4}$ As we have done previously ${ }^{1}$ the correlation ${ }^{5 a}$ of the substituent effects with group electronegativities ${ }^{5 b, c}$ was of particular interest, as this technique has proved to be very useful in predicting the properties of ketenes. For the better understanding of the effects of substituents bonded to nitrogen the corresponding N-substituted imines have been studied. There have been previous experimental ${ }^{6}$ and theoretical ${ }^{6 c, 7}$ studies of individual members of this important class, but no systematic study.

Results

The $a b$ initio molecular orbital calculations were carried out using the GAUSSIAN 90 and GAUSSIAN 92 series of programs ${ }^{8 a}$ on Hewlett Packard 9000-750 and IBM RS/6000530 minicomputers. All geometries were gradient optimized using the standard split valence $6-31 \mathrm{G}^{*}$ basis set at both the HF and MP2 levels of theory, ${ }^{8 b, c}$ with the Berny Optimizer with no geometrical constraints. ${ }^{8 b}$ The orders (number of negative diagonal elements of the Hessian matrix) of all critical points were determined at both the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ and MP2/6-31G* levels by analytical differentiation of the restricted HartreeFock wavefunction. This also provided the necessary thermo-
dynamic data for the calculation of zero point vibrational energies (ZPVE) and infrared absorption frequencies and intensities. The ZPVE were scaled by 0.90 for the HF/6-31G* calculated values, and by 0.95 for the MP2 calculations. All of the MP2/6-31G* and MP2/6-311 $++\mathrm{G}^{* *}$ calculations were done at the full level, that is, the frozen core approximation was not used.

At the suggestion of a referee we have calculated the energies and structures of the isocyanates and imines bearing the substituents $\mathrm{Li}, \mathrm{BH}_{2}, \mathrm{CH}_{3}$ and Na at the $\mathrm{MP} 2 / 6-311++-$ $\mathrm{G}^{* *} / / \mathrm{MP} 2 / 6-311++\mathrm{G}^{* *}$ level to ascertain whether this higher level of calculation causes any significant differences, particularly regarding the linear structures. The data are included in Tables $1-3$, and as can be seen there are no qualitative changes in the energies or in the structures.

Energies calculated for optimized geometries at both the MP2/6-31G*//MP2/6-31G* and $\mathrm{HF} / 6-31 \mathrm{G}^{*} / / \mathrm{HF} / 6-31 \mathrm{G}^{*}$ levels, and zero point vibrational energies (ZPVE) for substituted isocyanates $\mathrm{RN}=\mathrm{C}=\mathrm{O}$, imines $\mathrm{RN}=\mathrm{CH}_{2}$, and alkenes ${ }^{1 a . d}$ are given in Table 1. These were used to calculate isodesmic stabilization energies according to eqns. (1)-(3), as also given in Table 1.

(1)

Bond distances and angles calculated for isocyanates and imines are given in Tables 2 and 3, respectively, and calculated infrared stretching frequencies and intensities for the $\mathrm{N}=\mathrm{C}=\mathrm{O}$

Table 1 Calculated energies and zero point vibrational energies (ZPVE) (Hartree) for substituted isocyanates, imines and alkenes, and values of $\mathrm{SE}\left(\mathrm{kcal} \mathrm{mol}{ }^{-1}\right.$) for isodesmic reactions

	$-\mathrm{E}(\mathrm{RN}=\mathrm{C}=\mathrm{O})$	ZPVE	$-\mathrm{E}\left(\mathrm{RN}=\mathrm{CH}_{2}\right)$	ZPVE	$-\left(\mathrm{RCH}=\mathrm{CH}_{2}\right)$	ZPVE	$\mathrm{SE}(1)^{a}$	SE(2) ${ }^{\text {b }}$	$\mathrm{SE}(3)^{\text {c }}$	$\chi_{\text {BE }}{ }^{\text {d }}$
$\mathrm{H}^{\text {e }}$	167.7614	0.0205	94.0285	0.0390	78.0317	0.0493	3.5	2.8	6.3	2.20
$\mathrm{H}^{\text {f }}$	168.2324	0.0203	94.3231	0.0387	78.2943	0.0495	4.1	3.7	7.8	
$\mathrm{Li}^{\text {e }}$	174.6869	0.0130	100.8959	0.0275	84.8614	0.0386	28.2	36.8	65.0	1.00
$\mathrm{Li}^{\text {f }}$	175.1656	0.0125	101.2042	0.0275	85.1356	0.0389	29.4	34.3	63.7	
Li^{9}	175.3092	0.0125	101.3065	0.0269				35.2		
$\mathrm{BeH}^{\text {e }}$	182.4637	0.0210	108.6922	0.0359	92.6587	0.0473	27.8	24.8	52.6	1.47
BeH^{f}	182.9671	0.0210	109.0240	0.0362	92.9572	0.0477	28.4	23.0	51.3	
$\mathrm{BH}_{2}{ }^{\text {e }}$	193.0594	0.0325	119.3186	0.0495	103.2897	0.0603	24.6	6.8	31.4	1.92
$\mathrm{BH}_{2}{ }^{f}$	193.6026	0.0329	$119.6945^{\text {b }}$	0.0501	103.6262^{i}	0.0610	28.9	2.2	31.1	
$\mathrm{BH}_{2}{ }^{g}$	193.7602	0.0326	119.8097	0.0531				6.2		
$\mathrm{CH}_{3}{ }^{\text {e }}$	206.7912	0.0491	133.0615	0.0663	117.0715	0.0769	0.0	0.0	0.0	2.55
$\mathrm{CH}_{3}{ }^{5}$	207.3963	0.0493	133.4917	0.0665	117.4697	0.0776	0.0	0.0	0.0	
$\mathrm{CH}_{3}{ }^{\text {g }}$	207.5719	0.0488	133.6275	0.0655				0.0		
$\mathrm{NH}_{2}{ }^{\text {e }}$	222.7368	0.0386	149.0293	0.0561	133.0620	0.0669	-14.2	-13.7	-27.9	3.12
$\mathrm{NH}_{2}{ }^{\text {f }}$	$223.3736^{\text {j }}$	0.0378	$149.4933{ }^{\text {k }}$	0.0554	$133.4913^{\text {d }}$	0.0668	-12.4	-14.9	-27.3	
OH^{2}	242.5308	0.0257	168.8410	0.0437	152.8889	0.0550	-23.4	-24.5	-47.9	3.55
OH^{f}	243.1842	0.0246	169.3208	0.0427	153.3322	0.0545	-20.5	-25.3	-45.7	
F^{e}	266.4989	0.0135	192.8184	0.0313	176.8820	0.0429	-33.0	-30.5	-63.5	4.00
F^{f}	267.1442	0.0127	193.2893	0.0306	177.3152	0.0426	-29.5	-30.7	-60.1	
$\mathrm{Na}{ }^{e}$	329.0709	0.0119	255.2728	0.0262	239.2456	0.0377	23.9	41.1	65.0	1.00
$\mathrm{Na}{ }^{f}$	329.5507	0.0115	255.5815	0.0261	239.5226	0.0381	23.7	38.9	62.7	
$\mathrm{Na}{ }^{g}$	329.8143	0.0114	255.8046	0.0256				39.5		
MgH ${ }^{\text {e }}$	367.4054	0.0176	293.6234	0.0324	277.5969	0.0439	23.5	31.3	54.8	1.30
MgH^{f}	367.9063	0.0174	293.9531	0.0324	277.8954	0.0442	22.8	29.2	52.0	
$\mathrm{AlH}_{2}{ }^{\text {e }}$	410.3002	0.0258	336.5329	0.0417	320.5076	0.0527	22.4	22.8	45.2	1.60
$\mathrm{AlH}_{2}{ }^{\text {f }}$	410.8245	0.0259	336.8870^{m}	0.0407	$320.8285^{\text {i }}$	0.0532	23.8	19.3	43.0	
$\mathrm{SiH}_{3}{ }^{\text {e }}$	457.8842	0.0377	384.1245	0.0539	368.1125	0.0648	14.0	18.2	32.2	1.90
$\mathrm{SiH}_{3}{ }^{\text {f }}$	458.4380	0.0377	384.5062	0.0542	368.4631	0.0653	13.2	16.6	29.9	
$\mathrm{PH}_{2}{ }^{\text {e }}$	509.0667	0.0306	435.3238	0.0473	419.3259	0.0582	5.1	8.0	13.1	2.17
$\mathrm{PH}_{2}{ }^{\text {f }}$	509.6465	0.0302	435.7313^{j}	0.0470	419.7011	0.0583	5.3	6.4	11.8	
$\mathrm{SH}^{\text {e }}$	565.2432	0.0215	491.5225	0.0387	475.5419	0.0499	-5.6	-5.6	-11.2	2.65
SH^{f}	565.8436	0.0211	491.9507	0.0404	475.9359	0.0498	-5.6	-6.0	-11.6	
$\mathrm{Cl}^{\text {e }}$	626.5993	0.0129	552.8944	0.0302	536.9337	0.0415	-17.9	-15.5	-33.4	3.05
Cl^{f}	627.2111	0.0129	553.3328	0.0297	537.3361	0.0415	-15.4	-16.8	-32.1	
$\mathrm{CF}_{3}{ }^{\text {e }}$	503.3795	0.0279	429.6562	0.0455	413.6568	0.0563	6.1	-3.8	2.3	2.71
$\mathrm{CF}_{3}{ }^{\text {r }}$	504.4925	0.0270	430.5930	0.0447	414.5634	0.0557	4.7	-2.8	1.9	
$\mathrm{CH}=\mathrm{CH}_{2}{ }^{\text {e }}$	244.6386	0.0540	170.9111	0.0714	154.9197	0.0824	1.2	-1.3	-0.1	2.58
$\mathrm{CH}=\mathrm{CH}_{2}{ }^{\text {f }}$	$245.3685^{\text {n }}$	0.0535	171.4648°	0.0706	155.4417	0.0821	0.9	-0.5	0.4	
$\mathrm{CH}=\mathrm{O}^{\text {e }}$	280.4933	0.0321	206.7602	0.0488	190.7624	0.0599	5.2	1.8	7.0	2.60
$\mathrm{CH}=\mathrm{O}^{\text {f }}$	$281.2673{ }^{\text {p }}$	0.0312	$207.3562^{\text {q }}$	0.0480	191.3286^{r}	0.0592	3.6	3.9	7.5	
$\mathrm{C} \equiv \mathrm{CH}^{\text {e }}$	243.4164	0.0313	169.6923	0.0484	153.7079	0.0596	-3.1	-3.6	-6.7	2.66
$\mathrm{C} \equiv \mathrm{CH}^{f}$	244.1410	0.0294	170.2403	0.0465	154.2249	0.0580	-3.9	-2.5	-6.4	
$\mathrm{CN}^{\text {e }}$	259.4716	0.0212	185.7511	0.0384	169.7680	0.0495	-7.5	-5.8	-13.3	2.69
CN ${ }^{f}$	260.2285	0.0200	186.3302	0.0372	170.3161	0.0485	-4.8	-3.9	-8.7	
NO^{e}	296.3754	0.0190	222.6603	0.0368	206.6774	0.0481	-4.0	-8.8	-12.8	3.12
NO^{f}	$297.1946{ }^{\text {s }}$	0.0170	$223.2983{ }^{\text {t }}$	0.0348	207.2808^{r}	0.0465	-2.4	-4.8	-7.2	
$\mathrm{NO}_{2}{ }^{e}$	371.1818	0.0255	297.4755	0.0429	281.5041	0.0542	-11.2	-14.6	-25.8	3.22
$\mathrm{NO}_{2}{ }^{\text {f }}$	372.2001	0.0237	298.3164	0.0412	282.3113	0.0532	-10.0	-12.9	-23.0	

${ }^{a}$ Isodesmic stabilization energy ($\mathrm{kcal} \mathrm{mol}{ }^{-1}$, including ZPVE) of imines relative to alkenes by eqn. (1). ${ }^{b}$ Isodesmic stabilization energy ($\mathrm{kcal}{ }^{\text {mol }}{ }^{-1}$, including ZPVE) of isocyanates relative to imines according to eqn. (2). ${ }^{\text {c }}$ Isodesmic stabilization energy ($\mathrm{kcal}^{2} \mathrm{~mol}^{-1}$, including ZPVE) of isocyanates relative to alkenes according to eqn. (3). ${ }^{d}$ Group electronegativity. ${ }^{e} \mathrm{HF} / 6-31 \mathrm{G}^{*} / / \mathrm{HF} / 6-31 \mathrm{G}^{*}$. ${ }^{f} \mathrm{MP} 2 / 6-31 \mathrm{G}^{*} / / \mathrm{MP} 2 / 6-31 \mathrm{G}^{*} .{ }^{g} \mathrm{MP} 2 / 6-311++$ $\mathrm{G}^{* *} / / \mathrm{MP} 2 / 6-311++\mathrm{G}^{* *} .{ }^{h}$ Perpendicular; 119.6300 (planar). ${ }^{i}$ Planar. ${ }^{j}$ Twisted; 223.3575 (planar). ${ }^{k}$ Pyramidal; 149.4884 (planar). ${ }{ }^{1}$ Pyramidal. ${ }^{m}$ Perpendicular; 336.8677 (planar). ${ }^{n}$ anti; 245.3678 (syn). ${ }^{\circ}$ anti; 171.4563 (syn). ${ }^{p}$ syn; 281.2643 (anti). ${ }^{q}$ syn; 207.3552 (anti). ${ }^{r}$ anti. ${ }^{s}$ anti; 297.1893 (syn) ' $\operatorname{syn}: 223.2911$ (anti).
group are given in Table 4. Atomic charges for the isocyanates and imines were also calculated by the Mulliken method, ${ }^{9 a}$ as well as the natural bond orbital (NBO) method of Reed and Weinhold, ${ }^{9 b . c}$ and the results are given in Tables 5 and 6.

Structures of Isocyanates and Imines.-Comparison of the calculated geometries of isocyanates and imines with experimentally determined values are given in Table 7. These include calculations at the HF/6-31G* level reported by others for isocyanates substituted with $c-\mathrm{Pr},{ }^{3 e} \mathrm{CH}_{3} \mathrm{CO},{ }^{3 a}$ and $\mathrm{ClCO}^{3 b}$ substituents. For $\mathrm{SiH}_{3} \mathrm{~N}=\mathrm{C}=\mathrm{O}$ there are two experimentally determined structures ${ }^{4 c, d}$ and it would appear that the structure determined more recently by electron diffraction, ${ }^{4 d}$ is more accurate than the microwave structure determined earlier, ${ }^{4 c}$ as
the $\mathrm{N}^{1} \mathrm{C}^{1}$ and $\mathrm{C}^{1} \mathrm{O}^{1}$ bond lengths in the electron diffraction structure ${ }^{4 d}$ are much closer to those for the other compounds in the group, and the former bond is longer than the latter in agreement with all the other experimentally determined values. Only this latter geometry is considered in the following paragraph.

Comparison of the geometries calculated at the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ and MP2 $/ 6-31 \mathrm{G}^{*}$ levels show that the latter bond distances are consistently longer, and there are also significant differences in the bond angles calculated by the two methods, with the $\mathrm{N}-\mathrm{C}-\mathrm{O}$ angles usually being smaller at the MP2 level, while the $\mathrm{M}-\mathrm{N}-\mathrm{C}$ angles are usually larger, with some exceptions. The geometry of $\mathrm{CH}_{3} \mathrm{~N}=\mathrm{C}=\mathrm{O}$ has also been reported at the MP2/6$311++\mathrm{G}^{* *}$ level, ${ }^{3 g}$ and these results are almost identical with

Table 2 Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ calculated for isocyanates $\mathrm{H}_{\mathrm{a}, \mathrm{b}} \mathrm{MN}^{1} \mathrm{C}^{1}=\mathrm{O}^{1}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline M \& $\mathrm{N}^{1} \mathrm{C}^{1}$ \& $\mathrm{O}^{1} \mathrm{C}^{1}$ \& M ${ }^{1}$ \& $\mathrm{Ha}_{\mathrm{a}, \mathrm{b}} \mathrm{M}$ \& $\mathrm{N}^{1} \mathrm{C}^{1} \mathrm{O}^{1}$ \& $\mathrm{MN}^{1} \mathrm{C}^{1}$ \& $\mathrm{H}_{\mathrm{a} . \mathrm{b}} \mathrm{MN}^{1}$ \& $\mathrm{Ha}_{\mathrm{a}} \mathrm{MN}^{1} \mathrm{C}^{1}$ \& $\mathrm{H}_{\mathrm{b}} \mathrm{MN}^{1} \mathrm{C}^{1}$

\hline $\mathrm{H}^{\text {a }}$ \& 1.200 \& 1.148 \& 0.994 \& \& 174.2 \& 125.2 \& \& \&

\hline $\mathrm{H}^{\text {b }}$ \& 1.224 \& 1.184 \& 1.008 \& \& 171.7 \& 125.9 \& \& \&

\hline $\mathrm{Li}^{\text {a }}$ \& 1.180 \& 1.172 \& 1.755 \& \& 180.0 \& 180.0 \& \& \&

\hline $\mathrm{Li}^{\text {b }}$ \& 1.214 \& 1.202 \& 1.756 \& \& 180.0 \& 180.0 \& \& \&

\hline $\mathrm{Li}^{\text {c }}$ \& 1.210 \& 1.195 \& 1.748 \& \& 180.0 \& 180.0 \& \& \&

\hline BeH^{a} \& 1.185 \& 1.152 \& 1.495 \& 1.327 \& 180.0 \& 180.0 \& 180.0 \& \&

\hline $\mathrm{BeH}^{\text {b }}$ \& 1.213 \& 1.185 \& 1.495 \& 1.327 \& 180.0 \& 180.0 \& 180.0 \& \&

\hline $\mathrm{BH}_{2}{ }^{\text {a }}$ \& 1.178 \& 1.153 \& 1.412 \& 1.187 \& 180.0 \& 180.0 \& 119.2 \& \&

\hline $\mathrm{BH}_{2}{ }^{\text {b }}$ \& 1.218 \& 1.183 \& 1.419 \& 1.193, 1.190 \& 174.2 \& 149.9 \& 119.7, 118.2 \& 0.0 \& 180.0

\hline $\mathrm{BH}_{2}{ }^{\text {c }}$ \& 1.220 \& 1.171 \& 1.427 \& 1.191, 1.188 \& 174.0 \& 141.3 \& 119.4, 118.2 \& 0.0 \& 180.0

\hline $\mathrm{CH}_{3}{ }^{\text {a }}$ \& 1.180 \& 1.158 \& 1.437 \& 1.083, 1.081 \& 175.1 \& 143.1 \& 111.5, 109.2 \& 0.0 \& 120.7

\hline $\mathrm{CH}_{3}{ }^{\text {b }}$ \& 1.214 \& 1.191 \& 1.442 \& 1.093, 1.089 \& 172.3 \& 138.0 \& 110.8, 108.4 \& 180.0 \& 60.7

\hline $\mathrm{CH}_{3}{ }^{\text {c }}$ \& 1.213 \& 1.180 \& 1.445 \& 1.092, 1.089 \& 172.7 \& 135.6 \& 110.8, 108.6 \& 180.0 \& 60.7

\hline $\mathrm{NH}_{2}{ }^{\text {a }}$ \& 1.208 \& 1.147 \& 1.424 \& 1.002 \& 172.8 \& 122.4 \& $$
105.1
$$ \& 124.1 \& 124.1

\hline $\mathrm{NH}_{2}{ }^{\text {b }}$ \& 1.230 \& 1.186 \& 1.430 \& 1.021 \& 168.3 \& 127.2 \& 104.4 \& 124.9 \& 124.9

\hline OH^{a}
$\mathrm{OH}^{\text {b }}$ \& 1.217
1.242 \& 1.144
1.184 \& 1.389
1.422 \& 0.948 \& 173.1 \& 116.7 \& 102.7 \& 180.0 \&

\hline $\mathrm{OH}^{\text {b }}$ \& 1.242 \& 1.184 \& 1.422 \& 0.974 \& 169.0 \& 118.1 \& 100.6 \& 180.0 \&

\hline $\mathrm{F}^{\text {a }}$
F

b \& 1.239
1.262 \& 1.135
1.177 \& 1.374
1.418 \& \& 173.2 \& 109.9 \& \& \&

\hline $\stackrel{\mathrm{Na}}{ }{ }^{\text {a }}$ \& 1.262
1.178 \& 1.177
1.180 \& 1.418
2.088 \& \& 168.8
180.0 \& 110.8 \& \& \&

\hline $\mathrm{Na}{ }^{\text {b }}$ \& 1.213 \& 1.208 \& 2.086 \& \& 180.0 \& 180.0 \& \& \&

\hline $\mathrm{Na}^{\text {c }}$ \& 1.209 \& 1.201 \& 2.111 \& \& 180.0 \& 180.0 \& \& \&

\hline $\mathrm{MgH}^{\text {a }}$ \& 1.184 \& 1.161 \& 1.891 \& 1.700 \& 180.0 \& 180.0 \& 180.0 \& \&

\hline $\mathrm{MgH}^{\text {b }}$ \& 1.213 \& 1.193 \& 1.903 \& 1.704 \& 180.0 \& 180.0 \& 180.0 \& \&

\hline $\mathrm{AlH}_{2}{ }^{\text {a }}$ \& 1.184 \& 1.154 \& 1.780 \& 1.573 \& 180.0 \& 180.0 \& 117.9 \& \&

\hline $\mathrm{AlH}_{2}{ }^{\text {b }}$ \& 1.211 \& 1.187 \& 1.790 \& 1.579 \& 180.0 \& 180.0 \& 117.5 \& \&

\hline $\mathrm{SiH}_{3}{ }^{\text {a }}$ \& 1.178 \& 1.154 \& 1.715 \& 1.469 \& 180.0 \& 180.0 \& 109.9 \& \&

\hline $\mathrm{SiH}_{3}{ }^{\text {b }}$ \& 1.205 \& 1.188 \& 1.721 \& 1.479 \& 180.0 \& 180.0 \& 108.8 \& \&

\hline $\mathrm{PH}_{2}{ }^{\text {a }}$ \& 1.183 \& 1.154 \& 1.709 \& 1.399 \& 176.5 \& 148.6 \& 97.8 \& 132.2 \& 132.2

\hline $\mathrm{PH}_{2}{ }^{\text {b }}$ \& 1.215 \& 1.188 \& 1.725 \& 1.415 \& 174.1 \& 141.3 \& 97.0 \& 132.7 \& 132.7

\hline $\mathrm{SH}^{\text {a }}{ }^{\text {SH }}$ \& 1.193 \& 1.151 \& 1.695 \& 1.321 \& 175.1 \& 133.3 \& 94.9 \& 180.0 \&

\hline $\mathrm{SH}^{\text {b }}$ \& 1.223 \& 1.187 \& 1.708 \& 1.338 \& 172.4 \& 130.8 \& 93.8 \& 180.0 \&

\hline Cl^{a} \& 1.217 \& 1.141 \& 1.694 \& \& 173.8 \& 120.2 \& \& \&

\hline $\mathrm{Cl}^{\text {b }}$ \& 1.241 \& 1.181 \& 1.709 \& \& 169.7 \& 121.9 \& \& \&

\hline $\mathrm{CF}_{3}{ }^{\text {a }}$ \& 1.204 \& 1.139 \& 1.398 \& 1.311, $1.322^{\text {d }}$ \& 174.6 \& 129.6 \& \& \&

\hline $\mathrm{CF}_{3}{ }^{\text {b }}$ \& 1.228 \& 1.177 \& 1.406 \& $1.350,1.339^{d}$ \& 172.7 \& 128.4 \& $$
112.3 e^{e} 110.2^{e}
$$ \& 0.0 \& 120.3

\hline $\mathrm{CH}=\mathrm{CH}_{2}{ }^{\text {a.f }}$ \& 1.188 \& 1.153 \& 1.397 \& 1.075^{g} \& 174.8 \& 139.3 \& $115.9{ }^{h}$ \& 0.0 \&

\hline $\mathrm{CH}=\mathrm{CH}_{2}{ }^{\text {b, }}$ \& 1.218 \& 1.188 \& 1.397 \& 1.087^{g} \& 172.4 \& 138.0 \& $116.3{ }^{\text {i }}$ \& 0.0 \&

\hline $\mathrm{CH}=\mathrm{O}^{\text {a,j }}$ \& 1.213 \& 1.137 \& 1.397 \& 1.081^{k} \& 174.1 \& 126.8 \& $111.4{ }^{\text {r }}$ \& \&

\hline $\mathrm{CH}=\mathrm{O}^{\text {b,j }}$ \& 1.234 \& 1.177 \& 1.412 \& 1.096^{m} \& 172.6 \& 127.9 \& 111.0^{n} \& \&

\hline $\mathrm{C} \equiv \mathrm{CH}^{\text {a }}$ \& 1.192 \& 1.146 \& 1.331 \& 1.184° \& 173.9 \& 141.0 \& 177.5^{p} \& \&

\hline $\mathrm{C} \equiv \mathrm{CH}^{\text {b }}$ \& 1.218 \& 1.184 \& 1.331 \& 1.218^{q} \& 171.7 \& 142.6 \& $174.7{ }^{p}$ \& \&

\hline CN^{a} \& 1.206 \& 1.136 \& 1.325 \& 1.136^{r} \& 173.7 \& 133.7 \& $177.1{ }^{\text {s }}$ \& \&

\hline $\mathrm{CN}^{\text {b }}$ \& 1.227 \& 1.176 \& 1.330 \& 1.184^{r} \& 171.6 \& 135.8 \& $176.9{ }^{\text {s }}$ \& \&

\hline $\mathrm{NO}^{\text {a.f }}$ \& 1.222 \& 1.136 \& 1.409 \& 1.155^{\prime} \& 174.3 \& 118.6 \& 111.8" \& \&

\hline $\mathrm{NO}^{\text {b.f }}$ \& 1.243 \& 1.179 \& 1.517 \& $1.191^{\text {t }}$ \& 173.4 \& 117.3 \& $110.9{ }^{\text {u }}$ \& \&

\hline $\mathrm{NO}_{2}{ }^{\text {a }}$ \& 1.238 \& 1.126 \& 1.382 \& 1.197, 1.175 ${ }^{\text {t }}$ \& 172.8 \& 115.8 \& 117.7, $115.0{ }^{\text {u }}$ \& \&

\hline $\mathrm{NO}_{2}{ }^{\text {b }}$ \& 1.251 \& 1.172 \& 1.448 \& $1.232,1.222^{\text {t }}$ \& 171.9 \& 115.6 \& 117.8, 113.7 ${ }^{\text {u }}$ \& \&

\hline
\end{tabular}

${ }^{a} \mathrm{HF} / 6-31 \mathrm{G}^{*} .{ }^{b} \mathrm{MP} / 6-31 \mathrm{G} * .{ }^{c} \mathrm{MP} 2 / 6-311++\mathrm{G}{ }^{* *} .{ }^{d} \mathrm{C}-\mathrm{F} .{ }^{e} \mathrm{FCN} .{ }^{f}$ anti. ${ }^{g} 1.316(\mathrm{C}=\mathrm{C}) .{ }^{h} 122.3(\mathrm{C}=\mathrm{C}-\mathrm{N}) .{ }^{i} 121.5(\mathrm{C}=\mathrm{C}-\mathrm{N}) .{ }^{j}$ syn. ${ }^{k} 1.182(\mathrm{C}=\mathrm{O})$.
${ }^{1} 125.0(\mathrm{O}=\mathrm{C}-\mathrm{N}) .{ }^{m} 1.214(\mathrm{C}=\mathrm{O}) .{ }^{n} 125.2(\mathrm{OCN}) .{ }^{\circ} \mathrm{C} \equiv \mathrm{C}, 1.056(\mathrm{C}-\mathrm{H}) .{ }^{p} \mathrm{C} \equiv \mathrm{C}-\mathrm{N} .{ }^{q} \mathrm{C} \equiv \mathrm{C}, 1.065(\mathrm{C}-\mathrm{H}) .{ }^{r} \mathrm{C} \equiv \mathrm{N} .{ }^{s} \mathrm{NC}-\mathrm{N} .{ }^{t} \mathrm{~N}-\mathrm{O} .{ }^{n} \mathrm{O}-\mathrm{N}-\mathrm{N}$.
ours, obtained at the same level without the frozen core approximation. This structure shows closer agreement with the experimental structure compared with the MP2/6-31G* geometry (Table 7), and it was suggested ${ }^{3 g}$ that these calculations give the best structural data available for methyl isocyanate.
For the nine isocyanate structures where comparisons of the calculated and experimental structures are possible, the differences in the N-substituent bond lengths are rather small, ranging from 0.0 to $0.018 \AA$, except for the cyano derivative, where the difference is $0.047 \AA$. For the $\mathrm{N}^{1} \mathrm{C}^{1}$ and $\mathrm{C}^{1} \mathrm{O}^{1}$ bond lengths the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ calculated values are consistently shorter by an average of $0.017 \AA$, with a largest variation of $0.038 \AA$, for the SiH_{3} substituent, while the MP2/6-31G* distances are usually longer, with an average deviation of $0.015 \AA$. This same trend was also noted for ketenes, with the experimental values almost halfway between the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ and MP2/6-31G* values. ${ }^{1 d}$ For the $\mathrm{M}-\mathrm{N}^{1}-\mathrm{C}^{1}$ and $\mathrm{N}^{1}-\mathrm{C}^{1}-\mathrm{O}^{1}$
bond angles the deviations at the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ level average 2.2°, with the largest difference of 6.3° for the CN derivative. The MP2/6-31G* calculated values are closer to the experimental values, with an average deviation of 1.6°. Thus with the possible exception of the CN substituted case the agreement with the calculated and experimental geometries is rather good, and this lends confidence to the utility and accuracy of the calculations. It may also be noted that in three cases the $\mathrm{N}^{1} \mathrm{C}^{1} \mathrm{O}^{1}$ bonds were assumed to be linear in deriving the experimental structures, although this is contrary to the results calculated and found experimentally for all the other compounds in Table 7, with the exception of $\mathrm{SiH}_{3} \mathrm{~N}=\mathrm{C}=\mathrm{O}$. These results agree with previous findings that whereas the geometry of HNCO calculated without polarization functions is linear the inclusion of these functions gives a bent HNC bond, in agreement with experiment. ${ }^{3 c}$
There have been many theoretical calculations of the structures of substituted imines, ${ }^{7}$ and a comparison of the

Table 3 Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ calculated for imines $\mathrm{H}_{\mathrm{a}, \mathrm{b}} \mathrm{MN}^{1}=\mathrm{CH}^{1}$

$\mathrm{MH}_{\mathrm{a} . \mathrm{b}}$	$\mathrm{N}^{1} \mathrm{C}^{1}$	MN^{1}	$\mathrm{C}^{1} \mathrm{H}^{1}$	$\mathrm{C}^{1} \mathrm{H}^{2}$	MH_{a}	MH_{b}	$\mathrm{MN}^{1} \mathrm{C}^{1}$	$\mathrm{N}^{1} \mathrm{C}^{1} \mathrm{H}^{1}$	$\mathrm{N}^{1} \mathrm{C}^{1} \mathrm{H}^{2}$	$\mathrm{Ha}_{\mathrm{a} \text { b }} \mathrm{MN}^{1}$	$\mathrm{Ha}_{\text {ab }} \mathrm{MN}^{1} \mathrm{C}^{1}$
$\mathrm{H}^{\text {a }}$	1.250	1.006	1.084	1.080			111.5	124.7	119.3		
$\mathrm{H}^{\text {b }}$	1.281	1.026	1.094	1.089			109.7	125.5	118.4		
$\mathrm{Li}^{\text {a }}$	1.237	1.731	1.099	1.099			180.0	123.9	123.9		
$\mathrm{Li}^{\text {b }}$	1.263	1.763	1.110	1.110			180.0	123.9	123.9		
$\mathrm{Li}^{\text {c }}$	1.262	1.727	1.111	1.111							
$\mathrm{BeH}^{\text {a }}$	1.234	1.477	1.089	1.089	1.334		180.0	122.8	122.8	180.0	
$\mathrm{BeH}^{\text {b }}$	1.259	1.482	1.100	1.100	1.332		180.0	122.7	122.7	180.0	
$\mathrm{BH}_{2}{ }^{\text {a }}$	1.230	1.362	1.084	1.084	1.191	1.191	180.0	121.9	121.9	119.0	90.0
$\mathrm{BH}_{2}{ }^{\text {b }}$	1.256	1.363	1.093	1.093	1.194	1.194	180.0	121.5	121.5	118.4	90.0
$\mathrm{BH}_{2}{ }^{\text {c }}$	1.256	1.366	1.093	1.093	1.192	1.192	180.0	121.3	121.3	118.3 - 113.0	90.0
$\mathrm{CH}_{3}{ }^{\text {a }}$	1.247	1.444	1.086	1.079	1.089	1.084	118.6	123.7	119.6	113.6, 109.0	0.0, 121.6
$\mathrm{CH}_{3}{ }^{\text {b }}$	1.277	1.456	1.098	1.088	1.100	1.093	116.3	123.9	119.0	113.6, 108.6	$0.0,121.7$
$\mathrm{CH}_{3}{ }^{\text {c }}$	1.276	1.455	1.098	1.089	1.100	1.093	116.2	123.3	119.2	113.1, 108.8	0.0, 121.6
$\mathrm{NH}_{2}{ }^{\text {a }}$	1.251	1.371	1.084	1.074	1.003	0.998	118.4	123.4	118.4	$113.5,108.9$	30.9, 154.3
$\mathrm{NH}_{2}{ }^{\text {b }}$	1.285	1.386	1.095	1.083	1.023	1.014	116.7	123.7	117.7	113.5, 108.5	29.2,152.2
$\mathrm{OH}^{\text {a }}$	1.249	1.369	1.077	1.073	0.947		112.0	122.6	117.3	104.5	180.0
$\mathrm{OH}^{\text {b }}$	1.283	1.409	1.088	1.083	0.973		110.0	122.8	116.4	102.0	180.0
$\mathrm{F}^{\text {a }}$	1.248	1.369	1.075	1.073			109.7	122.8	116.3		
$\mathrm{F}^{\text {b }}$	1.279	1.417	1.085	1.083			108.1	123.1	115.4		
$\mathrm{Na}^{\text {a }}$	1.236	2.065	1.104	1.104			180.0	124.4	124.4		
$\mathrm{Na}^{\text {b }}$	1.261	2.066	1.116	1.116			180.0	124.5	124.5		
$\mathrm{Na}^{\text {c }}$	1.261	2.097	1.116	1.116			180.0	124.2	124.2		
MgH ${ }^{\text {a }}$	1.237	1.872	1.094	1.094	1.709		180.0	123.4	123.4	180.0	
$\mathrm{MgH}^{\text {b }}$	1.262	1.888	1.105	1.105	1.712		180.0	123.4	123.4	180.0	
$\mathrm{AlH}_{2}{ }^{\text {a }}$	1.234	1.751	1.089	1.089	1.579	1.579	180.0	122.8	122.8	118.2	90.0
$\mathrm{AlH}_{2}{ }^{\text {b }}$	1.259	1.766	1.099	1.099	1.583	1.583	180.0	122.6	122.6	117.2	90.0
$\mathrm{SiH}_{3}{ }^{\text {a }}$	1.248	1.746	1.089	1.084	1.482	1.472	124.7	124.5	120.6	111.5, 108.8	$0.0,120.5$
$\mathrm{SiH}_{3}{ }^{\text {b }}$	1.278	1.764	1.101	1.094	1.492	1.481	120.9	124.9	120.0	111.6, 108.3	0.0, 120.7
$\mathrm{PH}_{2}{ }^{\text {a }}$	1.248	1.723	1.087	1.081	1.411	1.399	123.5	124.4	119.6	$101.8,97.5$	26.8, 124.0
$\mathrm{PH}_{2}{ }^{\text {b }}$	1.279	1.742	1.098	1.091	1.427	1.412	120.5	124.9	118.9	$101.6,96.6$	$\begin{gathered} 28.3,125.1 \end{gathered}$
$\mathrm{SH}^{\text {a }}$	1.251	1.709	1.083	1.078	1.322		117.7	124.8	118.0	95.6	180.0
$\mathrm{SH}^{\text {b }}$	1.285	1.730	1.094	1.087	1.338		115.5	125.5	116.8	94.3	180.0
Cl^{a}	1.250	1.725	1.078	1.077			114.4	125.0	116.2		
$\mathrm{Cl}^{\text {b }}$	1.283	1.750	1.089	1.087			112.8	125.5	115.0		
$\mathrm{CF}_{3}{ }^{\text {a }}$	1.249	1.410	1.079	1.077	$1.315^{\text {d }}$	$1.327^{\text {d }}$	119.4	124.2	118.4	$115.0{ }^{e}{ }^{\text {1 }} 109.7{ }^{\text {e }}$	
$\mathrm{CF}_{3}{ }^{\text {b }}$	1.278	1.423	1.090	1.087	$1.342^{\text {d }}$	$1.357^{\text {d }}$	117.5	124.3	117.7	$115.7{ }^{e}{ }^{e} 109.1{ }^{e}$	
$\mathrm{CH}=\mathrm{CH}_{2}{ }^{\text {a.f }}$	1.252	1.404	1.085	1.078	1.082	1.319^{9}	118.1	123.6	119.5	117.6^{h}	
$\mathrm{CH}=\mathrm{CH}_{2}{ }^{\text {b }}$. f	1.284	1.408	1.098	1.088	1.095	1.338^{9}	116.5	123.8	119.1	$120.2{ }^{\text {a }}$	
$\mathrm{CH}=\mathrm{O}^{\text {a.i }}$	1.257	1.420	1.080	1.078	1.086	1.185^{j}	115.8	123.3	118.8	111.9^{k}	
$\mathrm{CH}=\mathrm{O}^{\text {b,i }}$	1.284	1.444	1.093	1.088	1.099	1.217^{j}	114.1	123.1	118.5	111.6	
$\mathrm{C} \equiv \mathrm{CH}^{\text {a }}$	1.256	1.353	1.081	1.076	1.187^{\prime}	1.056^{m}	119.0	123.6	118.5	177.2^{n}	
$\mathrm{C} \equiv \mathrm{CH}^{\text {b }}$	1.288	1.356	1.093	1.087	1.221^{\prime}	$1.065{ }^{\text {m }}$	118.2	123.8	117.9	$177.4{ }^{n}$	
$\mathrm{CN}^{\text {a }}$	1.257	1.350	1.080	1.076	1.137°		118.1	123.9	118.1	176.8^{p}	
$\mathrm{CN}^{\text {b }}$	1.287	1.357	1.091	1.086	1.184°		117.4	124.0	117.5	$174.6{ }^{p}$	
NO ${ }^{\text {a,i }}$	1.256	1.412	1.080	1.075	1.163^{q}		109.0	122.4	118.8	111.9^{r}	
$\mathrm{NO}^{\text {b.i }}$	1.279	1.568	1.095	1.086	$1.202^{\text {a }}$		111.8	123.0	118.2	$114.8{ }^{r}$	
$\mathrm{NO}_{2}{ }^{\text {a }}$	1.255	1.422	1.075	1.074	1.179^{a}	1.194^{q}	113.9	123.9	116.3	$113.5,120.1^{r}$	
$\mathrm{NO}_{2}{ }^{\text {b }}$	1.280	1.468	1.089	1.085	$1.228^{\text {a }}$	1.231^{9}	111.1	123.8	116.6	113.4, 118.3^{r}	

${ }^{a} \mathrm{HF} / 6-31 \mathrm{G}^{*} .{ }^{b} \mathrm{MP} 2 / 6-31 \mathrm{G}^{*} .{ }^{c} \mathrm{MP} 2 / 6-311++\mathrm{G} * * .{ }^{d} \mathrm{C}-\mathrm{F} .{ }^{e} \mathrm{FCN} .{ }^{f}$ anti. ${ }^{g} \mathrm{C}=\mathrm{C} .{ }^{h} 121.3(\mathrm{C}=\mathrm{C}-\mathrm{N}) .{ }^{i}$ syn. ${ }^{j} \mathrm{C}=\mathrm{O} .{ }^{k} 126.1(\mathrm{O}=\mathrm{C}-\mathrm{N}) .{ }^{\boldsymbol{t}} \mathrm{C} \equiv \mathrm{C} .{ }^{m} \mathrm{C}-\mathrm{H}$.
${ }^{n} \mathrm{C} \equiv \mathrm{C}-\mathrm{N} .{ }^{o} \mathrm{C} \equiv \mathrm{N} .{ }^{p} \mathrm{~N} \equiv \mathrm{C}-\mathrm{N} .{ }^{q} \mathrm{~N}-\mathrm{O} .{ }^{r} \mathrm{ONN}$.
experimental geometry of $\mathrm{CH}_{2}=\mathrm{NH}$ to those calculated with various basis sets has been presented. ${ }^{7 j}$ Closer agreement was obtained using the MP2/6-31G* level as compared with HF/6$31 \mathrm{G}^{*}$, and some further improvement was observed for some of the geometrical parameters at still higher levels. ${ }^{7 j}$ Despite the abundance of theoretical studies there are few experimental studies of the geometries of simple imines $\mathrm{RN}=\mathrm{CH}_{2}$. In particular for $\mathrm{ClN}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{2}=\mathrm{CHN}=\mathrm{CH}_{2}$ the microwave spectra were measured, ${ }^{6 c}$ but calculated geometries were used in assigning these spectra. ${ }^{6 c}$ Similarly for $\mathrm{CH}_{3} \mathrm{~N}=\mathrm{CH}_{2}$ some of the geometrical parameters were assumed ${ }^{66}$ and so apparently only for $\mathrm{HN}=\mathrm{CH}_{2}{ }^{6 a}$ and $\mathrm{HON}=\mathrm{CH}_{2}{ }^{6 h}$ are complete experimental structures available. For this latter compound the agreement between the experimental and the MP2/6-31G* geometries is excellent (Table 7).

The calculated linearity of isocyanates and imines with electropositive substituents ($\mathrm{Li}, \mathrm{BeH}, \mathrm{Na}, \mathrm{MgH}$, and AlH_{2}, plus $\mathrm{SiH}_{3} \mathrm{~N}=\mathrm{C}=\mathrm{O}$ and $\mathrm{BH}_{2} \mathrm{~N}=\mathrm{CH}_{2}$) is a striking structural feature.

At the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ level $\mathrm{BH}_{2} \mathrm{~N}=\mathrm{C}=\mathrm{O}$ is also linear, but at the MP2/6-31G* level the structure is bent. Experimentally the structures of $\mathrm{SiH}_{3} \mathrm{~N}=\mathrm{C}=\mathrm{O}^{4 c, d, m}$ and $\mathrm{SiMe}_{3} \mathrm{~N}=\mathrm{C}=\mathrm{O}^{4 e}$ have been interpreted as being linear, ${ }^{4 c, e, 11 e}$ or bent with a very small barrier to linearity. ${ }^{4 d, m}$ This linearity is consistent with a more effective σ-withdrawal by the nitrogen from the electropositive substituents when the nitrogen is sp hybridized in a linear geometry. The possibility of π-delocalization between nitrogen and lithium was considered for lithioimine and ruled out ${ }^{7 h}$ as a contributing factor in determining the linear geometry, as it was found this geometry is still maintained when the π orbitals are removed from the basis set for the calculated structure. ${ }^{7 h}$ For the Li -, BeH - and BH_{2}-substituted imines it has also been proposed that the $180^{\circ} \mathrm{MNC}$ bond angle arises from nuclear repulsion terms involving the electropositive group M , presumably with the CH_{2} group, whereas for electronegative substituents M the electronic repulsion between M and the lone pair on nitrogen N results in a decreased angle. ${ }^{7 h, i}$ Lithium

Table 4 Calculated infrared stretching frequencies (v) and intensities (I) for isocyanates $\mathrm{RN}=\mathrm{C}=\mathrm{O}$ (experimental values in parentheses)

R	v / cm^{-1}		$I / \mathrm{km} \mathrm{mol}^{-1 a}$	
	$\mathrm{HF} / 6-31 \mathrm{G}^{* a}$	MP2/6-31G* ${ }^{\text {b }}$	HF/6-31G*	MP2/6-31G*
H	$2235.2(2289,2260)^{\text {c }}$	2259.1	1047.0	506.9
Li	2196.6	2214.5	1734.7	1082.8
BeH	2262.7	2301.0	2048.1	1304.2
BH_{2}	2312.2 (2285) ${ }^{\text {d }}$	2295.8	2383.3	1223.2
CH_{3}	$2286.2(2288)^{\text {e.f }}$	2292.8	1622.4	778.4
NH_{2}	2199.8	2221.6	1430.6	685.5
OH	2211.4	2192.0	1127.2	478.8
F	2197.4	2144.2	877.9	344.2
Na	2190.3	2198.8	1537.6	946.1
MgH	2223.1	2256.6	1889.5	1138.2
AlH_{2}	2258.5	2296.3	2058.9	1237.0
SiH_{3}	$2301.5(2323)^{g}$	2341.8	1890.1	1116.4
PH_{2}	$2272.4(2285)^{h}$	2288.4	2234.4	1165.2
SH	2247.8	2261.0	1819.3	852.0
Cl	2203.2	2196.0	1446.1	636.3
CF_{3}	2263.0 (2309, 2273) ${ }^{i}$	2278.2	1443.0	798.6
$\mathrm{HC} \equiv \mathrm{C}$	2293.7	2322.2	2254.3	1168.3
$\mathrm{HC=O}$ (syn)	2240.5 (2246) ${ }^{j}$	2233.8	1682.0	939.1
$\mathrm{N}=\mathrm{O}$ (anti)	2201.3	2174.2	1501.8	949.8
NO_{2}	$2231.0{ }^{\text {a }}$	2178.1	1171.0	698.2
$\mathrm{CH}_{2} \mathrm{CH}($ anti)	$2258.6(2220)^{k}$	2284.8	2224.8	1100.2
CN	$2275.5(2270)^{t}$	2305.1	1716.8	1080.9

${ }^{a}$ Scaled by $0.9 .{ }^{b}$ Scaled by $0.95 .{ }^{c}$ Ref. $11(a) .{ }^{d}$ Ref. $11(b) .{ }^{e}$ Ref. $11(c) .{ }^{f}$ Ref. $11(a),(d)$, for octadecyl and isopropyl isocyanate, respectively. ${ }^{g}$ Ref. $11(e)$.
${ }^{h} \mathrm{PF}_{2}$, refs. $11(f),(g) .{ }^{i}$ Refs. $11(h),(i) .{ }^{j} \operatorname{Ref} .11(j) .{ }^{k} \mathrm{PhCH}=\mathrm{C}(\mathrm{CN})$, ref. $11(k) .{ }^{t}$ Ref. $11(l)$.

Table 5 Mulliken and natural bond orbital (NBO) (parentheses) charges for atoms in isocyanates $\mathrm{H}_{\mathrm{a}, \mathrm{b}} \mathrm{MN}=\mathrm{C}-\mathrm{O}$, and dipole moments μ / D

M	N^{1}	C^{1}	O^{1}	M	$\mathrm{H}_{\text {a.b }}$ (ave)	μ^{k}	X^{l}	Z^{\prime}
H	$-0.69(-0.89)$	0.81 (1.05)	$-0.46(-0.60)$	0.34 (0.45)		$2.35{ }^{\text {m }}$	1.83	1.48
Li	$-0.79(-1.20)$	0.70 (0.95)	$-0.58(-0.71)$	0.67 (0.95)		9.01	0.0	9.01
BeH	$-0.49(-1.31)$	0.78 (1.07)	$-0.48(-0.62)$	0.28 (1.43)	$-0.10(-0.57)$	1.51	0.0	1.51
BH_{2}	$-0.57(-0.93)$	0.80 (1.09)	$-0.47(-0.61)$	0.40 (0.67)	$-0.08(-0.11)$	1.66	0.0	1.66
CH_{3}	$-0.61(-0.68)$	0.79 (1.05)	$-0.50(-0.64)$	$-0.12(-0.41)$	0.14 (0.22)	$3.29{ }^{n}$	1.60	2.88
NH_{2}	$-0.52(-0.57)$	0.86 (1.07)	$-0.46(-0.59)$	-0.49 (-0.69)	0.30 (0.39)	2.69	0.64	2.62
OH	$-0.35(-0.41)$	0.85 (1.03)	$-0.43(-0.56)$	$-0.46(-0.58)$	0.38 (0.52)	1.91	0.24	1.90
F	-0.18(-0.27)	0.84 (1.03)	$-0.38(-0.52)$	$-0.28(-0.24)$		0.93	-0.02	-0.93
Na	$-0.80(-1.13)$	0.63 (0.91)	$-0.61(-0.74)$	0.78 (0.96)		11.35	0.00	11.35
MgH	$-0.79(-1.26)$	0.68 (1.01)	$-0.52(-0.66)$	0.75 (1.57)	-0.11(-0.66)	2.92	0.00	2.92
AlH_{2}	$-0.71(-1.17)$	0.77 (1.07)	$-0.49(-0.63)$	0.80 (1.59)	-0.18(-0.43)	2.39	0.00	2.39
SiH_{3}	$-0.69(-1.09)$	0.78 (1.09)	$-0.49(-0.63)$	0.40 (1.33)	0.17 (-0.23)	2.39	0.00	2.39
PH_{2}	$-0.72(-0.99)$	0.79 (1.07)	$-0.48(-0.62)$	0.54 (0.67)	$-0.06(-0.06)$	2.66	0.29	2.65
SH	$-0.70(-0.85)$	0.81 (1.06)	$-0.46(-0.60)$	0.28 (0.27)	0.08 (0.13)	2.40	0.57	2.33
Cl	$-0.64(-0.71)$	0.85 (1.06)	$-0.42(-0.55)$	0.21 (0.20)		0.92	0.91	0.07
CF_{3}	$-0.69(-0.78)$	0.84 (1.11)	$-0.42(-0.56)$	1.29 (1.44)	$-0.34{ }^{a}(-0.41)^{a}$	0.37	0.01	-0.37
$\mathrm{CH}=\mathrm{CH}_{2}$	$-0.60(-0.69)$	0.80 (1.07)	$-0.48(-0.62)$	$0.122^{\text {b }}(-0.01)^{c}$	0.16 (0.22)	$2.52^{\text {o.p }}$	1.39	2.11
$\mathrm{CH}=0$	$-0.67(-0.80)$	0.88 (1.13)	-0.41 (-0.55)	$0.53{ }^{e}(0.67)^{s}$	0.15 (0.17)	$1.95{ }^{\text {a }}$	-1.45	1.30
$\mathrm{C} \equiv \mathrm{CH}$	$-0.68(-0.68)$	0.79 (1.11)	$-0.45(-0.58)$	$0.25^{9}(0.17)^{h}$	$0.26^{d}(0.25)^{d}$	1.45	0.97	1.08
CN	-0.61 (-0.72)	0.86 (1.13)	$-0.40(-0.54)$	0.57 (0.50)	$-0.42^{i}(-0.38)^{i}$	$2.65{ }^{r}$	-1.39	-2.26
NO	$-0.49(-0.62)$	0.88 (1.09)	$-0.40(-0.54)$	0.26 (0.35)	$-0.25^{j}(-0.28)^{j}$	$1.04{ }^{\text {s }}$	0.21	-1.02
NO_{2}	-0.45 (-0.57)	0.93 (1.12)	$-0.35(-0.49)$	0.75 (0.80)	$-0.44(-0.43)^{j}$	2.42	-1.59	-1.82

${ }^{a} \mathrm{~F} .{ }^{b}-0.29\left(\mathrm{C}_{\beta}\right) .{ }^{c}-0.43\left(\mathrm{C}_{\beta}\right) .{ }^{d} \mathrm{H}$-alkyne. ${ }^{e}-0.47(\mathrm{O}) .{ }^{f}-0.63(\mathrm{O}) .{ }^{g}-0.18\left(\mathrm{C}_{\mathrm{B}}\right) .{ }^{h}-0.27\left(\mathrm{C}_{\beta}\right) .{ }^{i} \mathrm{~N} .{ }^{j} \mathrm{O} .{ }^{k}$ Debye. ${ }^{t}$ Dipole vectors, see the text. ${ }^{m}$ 2.07: ref. $11(m){ }^{n} 2.81$: ref. $11(n){ }^{o}{ }^{\circ}$ anti. $^{p} 2.12$: ref. $4(g) .{ }^{q} \operatorname{syn} ;$ anti $\left(X, 1.74 ; Z,-1.70 ;\right.$ net, 2.43). ${ }^{r} 2.53$: ref. $4(f) .{ }^{s}$ anti; syn $(X,-0.44 ; Z,-0.59$; net, 0.74).
amides are suggested to exist as ion pairs, ${ }^{70}$ and for lithium isocyanate (1) and lithium methyleneamide (2) the ionic structures are 1a and 2a, respectively. Particularly for $\mathrm{CH}_{2}=\mathrm{NBH}_{2}$ substantial dative π bonding between the lone pair of electrons on nitrogen and the p orbital on boron was suggested to contribute to the linear geometry. ${ }^{7 i}$ The charges on Li calculated for lithium isocyanate by the Mulliken and natural bond orbital (NBO) methods are 0.67 and 0.95 , respectively (Table 5), and these highly positive values also indicate that the σ-withdrawal effect represented by structure $\mathbf{1 a}$
is the most important for this molecule. A recent study ${ }^{3 h}$ of four-membered ring bridged structures of LiNCO and NaNCO agrees with our results that the linear structures are more stable. For $\mathrm{NaCH}=\mathrm{C}=\mathrm{O}$ the bridged structure is more stable. ${ }^{1 d}$

Table 6 Mulliken and natural bond orbital (NBO) (parentheses) charges for atoms in imines $\mathrm{H}_{\mathrm{a}, \mathrm{b}} \mathrm{MN}=\mathrm{CH}^{1} \mathrm{H}^{2}$, and dipole moments μ / D

M	N^{1}	C^{1}	$\mathrm{H}^{1} \mathrm{H}^{2}$ (ave)	M	$\mathrm{H}_{\mathrm{a}, \mathrm{b}}$ (ave)	μ^{t}	X^{m}	Z^{m}
H	$-0.51(-0.66)$	0.01 (-0.04)	0.12 (0.17)	0.26 (0.36)		2.24	1.56	1.62
Li	-0.66 (-1.10)	$0.02(-0.06)$	0.09 (0.12)	0.55 (0.92)		5.21	0.00	-5.21
BeH	-0.37 (-1.22)	0.08 (0.07)	0.11 (0.16)	0.19 (1.41)	$-0.12(-0.58)$	2.07	0.00	2.07
BH_{2}	-0.37 (-0.70)	0.04 (0.03)	0.13 (0.18)	0.27 (0.50)	$-0.10(-0.09)$	2.10	0.00	2.10
CH_{3}	$-0.42(-0.47)$	$-0.01(-0.06)$	0.12 (0.17)	$-0.15(-0.44)$	0.11 (0.20)	$1.74{ }^{n}$	1.39	1.05
NH_{2}	-0.24 (-0.26)	$-0.06(-0.15)$	0.12 (0.18)	$-0.50(-0.71)$	0.28 (0.38)	2.18	1.39	$0.87{ }^{\circ}$
OH	$-0.12(-0.14)$	$-0.03(-0.13)$	0.14 (0.20)	$-0.50(-0.64)$	0.36 (0.51)	0.42	-0.14	0.39
F	0.03 (0.00)	$-0.03(-0.12)$	0.16 (0.22)	$-0.33(-0.31)$		2.98	-0.55	2.93
Na	$-0.71(-1.04)$	$0.01(-0.10)$	0.01 (0.11)	0.68 (0.92)		7.59	0.00	-7.59
MgH	-0.71 (-1.17)	0.03 (0.01)	0.07 (0.14)	0.67 (1.55)	-0.13 (0.67)	0.80	0.00	0.80
AlH_{2}	$-0.59(-1.03)$	0.07 (0.06)	0.11 (0.16)	0.72 (1.50)	$-0.20(-0.43)$	1.48	0.00	1.48
SiH_{3}	$-0.60(-0.92)$	0.05 (0.03)	0.11 (0.16)	0.87 (1.29)	$-0.18(-0.24)$	1.75	0.84	1.56
PH_{2}	$-0.56(-0.79)$	0.01 (-0.02)	0.12 (0.18)	0.48 (0.62)	$-0.08(-0.08)$	2.10	0.87	$1.75{ }^{p}$
SH	$-0.50(-0.62)$	$-0.01(-0.06)$	0.14 (0.18)	0.17 (0.18)	0.07 (0.12)	0.98	0.15	0.96
Cl	-0.42 (-0.44)	$0.02(-0.04)$	0.16 (0.20)	0.08 (0.07)		$2.86{ }^{\text {a }}$	-0.15	2.86
CF_{3}	$-0.52(-0.59)$	0.02 (0.03)	0.16 (0.20)	1.24 (1.41)	$-0.35^{a}(-0.42)^{a}$	3.15	-0.52	3.11
$\mathrm{CH}=\mathrm{CH}_{2}$	-0.43 (-0.49)	$-0.01(-0.04)$	0.12 (0.18)	$0.09{ }^{\text {b }}(-0.04)^{c}$	$0.13{ }^{\text {d }}(0.21)^{\text {d }}$	1.72^{r}	1.20	1.23
$\mathrm{CH}=\mathrm{O}$	$-0.52(-0.63)$	0.05 (0.07)	0.16 (0.20)	$0.50{ }^{e}(0.65)^{f}$	0.13 (0.15)	$1.81{ }^{\text {s }}$	-1.45	1.07
$\mathrm{C} \equiv \mathrm{CH}$	-0.53(-0.51)	0.01 (0.03)	0.14 (0.19)	$0.24{ }^{g}(0.15)^{h}$	0.25 (0.25) ${ }^{i}$	2.23	0.77	2.09
CN	$-0.47(-0.55)$	0.04 (0.07)	0.16 (0.20)	0.53 (0.47)	$-0.44^{j}(-0.39)^{j}$	4.84	-2.18	4.32
NO	$-0.29(-0.40)$	0.02 (0.01)	0.16 (0.20)	0.21 (0.28)	$-0.28^{k}(-0.29)^{k}$	$3.63{ }^{\text {t }}$	-0.56	3.59
NO_{2}	$-0.28(-0.38)$	0.04 (0.04)	0.20 (0.22)	0.72 (0.77)	$-0.44^{k}(-0.44)^{k}$	4.56	-2.06	4.07

${ }^{a} \mathrm{~F}^{b}-0.29\left(\mathrm{C}_{\mathrm{B}}\right) .{ }^{c}-0.41\left(\mathrm{C}_{\beta}\right) .{ }^{d} \mathrm{H}_{\alpha, \beta}{ }^{\circ}{ }^{e}-0.49(\mathrm{O}) .{ }^{f}-0.63(\mathrm{O}) .{ }^{g}-0.25\left(\mathrm{C}_{\mathrm{B}}\right) \cdot{ }^{h}-0.29\left(\mathrm{C}_{\mathrm{B}}\right) \cdot{ }^{i} \mathrm{H}_{\mathrm{B}} \cdot{ }^{j} \mathrm{~N} .{ }^{k} \mathrm{O} .{ }^{t}$ Debye. ${ }^{m}$ Dipole vectors, see the text.

Comparison of the atomic charges for isocyanates relative to imines shows that without exception for either Mulliken or NBO charges that the nitrogen of the isocyanate has more negative charge than that of the imine. This effect is contrary to what would be expected based on the greater inductive electronwithdrawing effect of the $\mathrm{C}=\mathrm{O}$ in the isocyanato group compared with the CH_{2} of the imine, but is consistent with the π-donor effect from the isocyanato $\mathrm{C}=\mathrm{O}$ group as shown ($\mathbf{1 b}, \mathbf{c}$), comparable to that for the carbonyl or diazo groups noted in ketenes and diazomethanes, respectively, ${ }^{1 \text { a.d.e }}$ and this would be enhanced by the electronegative nitrogen. The importance of π donation from the carbonyl group to nitrogen in isocyanates has been noted, ${ }^{4 k}$ as particularly seen in their ${ }^{14} \mathrm{~N}$ and ${ }^{15} \mathrm{~N}$ NMR chemical shifts, which occur at remarkably high fields, overlapping the amine region. ${ }^{4 n-p}$

Isocyanates with the potential π-acceptor substituents $\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{CH}=\mathrm{O}$, and NO , all adopt coplanar conformations in which such conjugation is possible, as illustrated for the case of formyl isocyanate (3). This interaction was originally proposed to account for the dipole moment of vinylketene, and has been used to explain several properties of ketenes and diazomethanes. ${ }^{\text {1ad.e.e }}$ For the $\mathrm{CH}=\mathrm{O}, \mathrm{CN}, \mathrm{NO}$, and NO_{2} substituted isocyanates evidence for conjugation as in $\mathbf{3}$ is provided by the observation that the MP2/6-31G* isocyanato C-O bonds for these derivatives of 1.172-1.179 \AA are the shortest (along with $\mathrm{CF}_{3} \mathrm{~N}=\mathrm{C}=\mathrm{O}$ and $\mathrm{FN}=\mathrm{C}=\mathrm{O}$) observed for the isocyanates. Studies of aryl isocyanates using IR and ${ }^{19} \mathrm{~F}$ NMR spectroscopy also support the occurrence of π donation by the isocyanato group to suitable acceptors. ${ }^{4 l}$ Resonance stabilization of the imine $\mathrm{O}_{2} \mathrm{NH}=\mathrm{CH}_{2}$ has been cited as the cause for the ready formation of this molecule in the mass spectral fragmentation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). ${ }^{6 e}$ The imines $\mathrm{BH}_{2} \mathrm{~N}=\mathrm{CH}_{2}$ and $\mathrm{AlH}_{2} \mathrm{~N}=\mathrm{CH}_{2}$ adopt allene-like geometries with the hydrogens in perpendicular planes, permitting conjugation of the type $\mathrm{H}_{2} \overline{\mathrm{M}}=\stackrel{+}{\mathrm{N}}=\mathrm{CH}_{2}$, as previously noted for the BH_{2} derivatives. ${ }^{7 h}$

For the non-linear isocyanates the MP2/6-31G* bond angle
indicated in 3a is always less than $180^{\circ}\left(168.3-174.2^{\circ}\right)$ so the isocyanato oxygen bends away from the substituent, and there is a large variation in the $\mathrm{M}-\mathrm{N}=\mathrm{C}$ angle from low values of 110.8° for fluorine isocyanate and 115.6° for nitryl isocyanate

$\mathrm{O}_{2} \mathrm{NN}=\mathrm{C}=\mathrm{O}$ to 142.6° for ethynyl isocyanate $\mathrm{HC} \equiv \mathrm{CN}=\mathrm{C}=\mathrm{O}$. This is the behaviour predicted if the fluorine and the oxygens of the nitro group are repelled by the lone pair on the isocyanato nitrogen and attracted to the carbonyl carbon in 4 . For the imines there are particularly small MNC angles of 108.1° for fluorine and 111.8° for nitroso. The approach to linearity of ethynyl isocyanate may represent a contributing π-acceptor effect for the alkynyl group.

π-Donor substituents NH_{2} and PH_{2}, all favour twisted conformations in isocyanates in which π-donor effects are minimized. Thus 5 a is $10.1 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the conformation with a coplanar NH_{2} group (MP2/6-31G* , Table 1). The conformation $\mathbf{5 b}$ is $4.3 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathbf{5 a}$ at the MP2/6-31G*//MP2/6-31G* level and the mutual repulsion of the lone pairs in $\mathbf{5 b}$ evidently contributes to this preference. This same preference for twisted NH_{2} groups has been observed for ketenes and diazomethanes, ${ }^{1 a, d, e}$ and was explained as resulting from a repulsive interaction between the lone-pair on the substituent and the electron rich π system on the bonded

5a

5b

Table 7 Comparison of experimental and calculated $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ (parentheses) and MP2/6-31G* [brackets] bond distances (\AA) and bond angles (${ }^{\circ}$) of isocyanates $\mathrm{H}_{n} \mathrm{MN}^{1}=\mathrm{C}^{1}=\mathrm{O}^{1}$ and imines $\mathrm{H}_{n} \mathrm{MN}^{1}=\mathrm{C}^{1} \mathrm{H}^{2}$

${ }^{a}$ MP2/6-311 $++\mathrm{G}^{* *}$.

Fig. 1 Correlation of imine isodesmic MP2/6-31G* stabilization energies [eqn. (1)] with substituent electronegativity $\chi_{\text {BE }}$
atom of the cumulene, which is nitrogen for isocyanates. For $\mathrm{CH}_{2}=\mathrm{NNH}_{2}$ the planar structure is $3.1 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the structure where pyramidalisation of the NH_{2} group occurs (Table 3).
The repulsive $\pi-\pi$ interaction for coplanar $\mathrm{H}_{2} \mathrm{NCH}=\mathrm{C}=\mathrm{O}$ has been confirmed by Cossio et al. ${ }^{9 d}$ These authors also suggested there is a stabilizing interaction between the lone pair of the nitrogen and the LUMO of the ketene in the ketene
conformation corresponding to $\mathbf{5 a}$, but the ketene with the conformation corresponding to $\mathbf{5 b}$ is only $1.5 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable. ${ }^{1 d}$ Thus any stabilization due to the lone pair-LUMO interaction in 5a and in the corresponding ketene is evidently relatively small, and is not the major cause that these substituents adopt non-planar conformations.

Energetics.-The isodesmic reaction for the comparative substituent effect on imines and ethenes [eqn. (1)] is correlated with electronegativity by eqns. (4) and (5) for the HF and MP2 level calculations, respectively, and the latter correlation is shown in Fig. 1. These rather good correlations, with no essential difference between the HF and MP2 calculations, show a very strong preference of electropositive substituents for imines, and for electronegative substituents on alkenes, with a net difference in the MP2 SE between Li and F of 59.1 kcal mol^{-1}. In addition there is some evidence that π-acceptor substituents may favour imines in that the groups $\mathrm{BeH}, \mathrm{BH}_{2}$, $\mathrm{AlH}_{2}, \mathrm{CH}=\mathrm{O}$, and NO deviate above the correlation of eqn. (4) by $6.2,15.9,4.1,3.8$ and $5.8 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. These substituents have been identified on Fig. 1. This same effect for π-acceptor substituents has been noted for ketenes ${ }^{1 a, d}$ and diazomethanes. ${ }^{1 \mathrm{~b}, d}$ Exceptional behaviour is noted for CF_{3}, which favours the imine despite its electron-withdrawing (σ acceptor) character, and CN , which is a good π-acceptor but favours the alkene. As noted above the high stability of

Fig. 2 Correlation of isocyanate MP2/6-31G* isodesmic stabilization energies relative to imines [eqn. (2)] with substituent electronegativity χ_{BE}

Fig. 3 Correlation of isocyanate isodesmic MP2/6-31G* stabilization energies relative to alkenes [eqn. (3)] with substituent electronegativity χ_{bE}

Fig. 4 Comparison of natural bond orbital (NBO) atomic charges with Mulliken atomic charges for isocyanates (O) and imines (
$\mathrm{BH}_{2} \mathrm{~N}=\mathrm{CH}_{2}$ has been attributed to a linear allene-like structure $\mathrm{H}_{2} \overline{\mathrm{~B}}=\stackrel{+}{\mathrm{N}}=\mathrm{CH}_{2}{ }^{\text {.h }}$

$$
\begin{array}{cc}
\mathrm{SE}(1)=-20.5 \chi_{\mathrm{BE}}+52.6 & r=0.954(\mathrm{HF}) \\
\mathrm{SE}(1)=-19.9 \chi_{\mathrm{BE}}+51.5 & r=0.947(\mathrm{MP} 2) \tag{5}
\end{array}
$$

For comparison of the effect of substituents on the stability of isocyanates, the isodesmic stabilization energies (SE) were calculated relative to both imines [eqn. (2)] and alkenes [eqn. (3)]. These SE values both gave excellent correlations versus the group electronegativities χ_{BE}, for the imines [eqns. (6), (7)],
and for the alkenes [eqns. (8), (9)], also with no essential difference between the correlations using the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ and the MP2/6-31G* energies. These are illustrated in Figs. 2 and 3 using the MP2/6-31G* energies for the imines and alkenes, respectively.

$$
\begin{array}{ll}
\mathrm{SE}(2)=-23.6 \chi_{\mathrm{BE}}+60.0 & r=0.986(\mathrm{HF}) \\
\mathrm{SE}(2)=-22.1 \chi_{\mathrm{BE}}+55.8 & r=0.975(\mathrm{MP} 2) \\
\mathrm{SE}(3)=-44.1 \chi_{\mathrm{BE}}+112.5 & r=0.996(\mathrm{HF}) \\
\mathrm{SE}(3)=-41.9 \chi_{\mathrm{BE}}+107.4 & r=0.983(\mathrm{MP} 2) \tag{9}
\end{array}
$$

There is a remarkably large variation in the SE values as a function of substituent, with a range of $69.6 \mathrm{kcal} \mathrm{mol}{ }^{1}$ relative to imines and $123.8 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to alkenes, and these ranges are much larger than for any other system studied. ${ }^{1 a, b . d}$ The isocyanates do not show substantial positive deviations from the correlations as was found for ketenes and diazomethanes for π-acceptor substituents.

There are no special energetic effects apparent for π-donor substituents, in particular NH_{2} and PH_{2}, although these substituents adopt twisted geometries that preclude any $\pi-\pi$ interactions of the substituent lone pairs and the cumulene π systems, just as found for ketenes and diazomethanes. ${ }^{1 a . d, e}$ As noted above this geometrical feature is not primarily due to any attractive interactions between the lone pairs on the substituent and the electron deficient in-plane p orbital of the cumulene carbon, as the energetic difference between the syn and anti conformations $5 \mathbf{a}$ and $\mathbf{5 b}$ is significantly less than the difference in energy of the conformation with the planar substituent.

The high sensitivity of the isocyanate system to the electronegativity of the substituents may be related to the high coefficient of the highest occupied molecular orbital (HOMO) on the substituted nitrogen. For the various cumulene systems which have been studied, namely allenes, ${ }^{1 d}$ diazomethanes, ${ }^{1 e}$ ketenes ${ }^{1 a}$ and isocyanates, there is a linear correlation [eqn. (10)] between the respective HOMO coefficients of $0.395,0.434$, 0.436 and 0.474 of the substituent bonded atom of the cumulene, and the range of the calculated SE values relative to alkenes, for which the variation between the extreme substituents Na and F $(\Delta \mathrm{SE})$ is $16.3,30.9,45.8$ and $130.6 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, at the HF/6-31G* level.

$$
\begin{equation*}
E(\mathrm{HOMO})=\left(5.68 \times 10^{-4}\right) \Delta \mathrm{SE}+0.403 \quad r=0.91 \tag{10}
\end{equation*}
$$

Atomic Charges.-Because of the major interest in the comparison of atomic charges calculated by different methods, including the Mulliken method ${ }^{9 a}$ and the natural bond orbital method of Weinhold, ${ }^{9 b}$ the charges for the isocyanates and imines have been calculated by these methods (Tables 5 and 6 , respectively). These give reasonably good correlations by eqns. (11) and (12), which are comparable to those reported previously for ketenes, alkenes, diazomethanes, diazirines, allenes and cyclopropenes. ${ }^{1 d}$ Just as for these latter compounds the major deviations from the correlations occur for Be, Mg and Al , although the reason for the distinctive behaviour of these particular substituents has not yet been determined. An overlay plot of the NBO vs. Mulliken charges for isocyanates and imines is shown in Fig. 4.

$$
\begin{aligned}
& \text { charge }(\mathrm{NBO})_{\mathrm{iso}}=1.34(\text { charge Mulliken })+ 7.50 \times 10^{-5} \\
& r=0.97
\end{aligned}
$$

charge $(\mathrm{NBO})_{i \text { imine }}=1.41($ charge Mulliken $)+7.06 \times 10^{3}$,

$$
r=0.93
$$

Correlations of group electronegativities of M in $\mathrm{MN}=\mathrm{C}=\mathrm{O}$ and $\mathrm{MN}=\mathrm{CH}_{2}$ with the Mulliken charges of the N atom give correlation coefficients of 0.75 and 0.82 , respectively, whereas the NBO charges give corresponding correlation coefficients of 0.96 for both systems. Thus while the Mulliken and NBO charges follow similar patterns, the latter seem better correlated with other important molecular properties. Similar trends and conclusions resulted from consideration of the calculated atomic charges in other cumulenes. ${ }^{1 a, b . d}$ An independent comparison of Mulliken and NBO charges in acylketenes also led to the conclusion that these give closely parallel trends. ${ }^{9 e}$

Dipole Moments.-The calculated net dipole moments of the isocyanates are given in Table 5 , along with the positive components of the dipole in the molecular plane defined as shown on structure 7. The dipole moment of the parent isocyanate $\mathrm{HN}=\mathrm{C}=\mathrm{O}$ of 2.35 D (experimental $2.07 \mathrm{D}^{11 \mathrm{~m}}$) is more than those of diazomethane (1.53 D$)$ and ketene $(1.63 \mathrm{D}) .{ }^{1 d}$ The latter two are directed along the molecular axis toward the electronegative nitrogens or oxygen, respectively, but are somewhat reduced by electron donation back to the CH_{2} group, as shown in 6a. The dipole moment ${ }^{11 m}$ of $\mathrm{HN}=\mathrm{C}=\mathrm{O}$ has been assigned to an orientation of 49.5° from the principal inertial axis of the molecule, as shown in 7, and is affected by the lone pair on nitrogen, and the contributing structures $\mathbf{1 c}$ and $7 \mathbf{a}$, although the latter is reported to be unimportant. ${ }^{4 k}$

Infrared Frequencies.-In Table 4 are listed both the HF and MP2 calculated IR frequencies (scaled by 0.9 and 0.95 , respectively) and intensities for the isocyanate asymmetric stretch as a function of substituent. The MP2 frequencies have a maximum value of $2305 \mathrm{~cm}^{-1}$ for $\mathrm{N} \equiv \mathrm{CN}=\mathrm{C}=\mathrm{O}$ and a minimum value of $2144 \mathrm{~cm}^{-1}$ for $\mathrm{FN}=\mathrm{C}=\mathrm{O}$, and where experimental values are available ${ }^{10.11}$ these agree with the calculated values with average deviations of $\pm 15 \mathrm{~cm}{ }^{1}$. The measured values have been found to vary depending on the physical state; thus for $\mathrm{CH}_{3} \mathrm{~N}=\mathrm{C}=\mathrm{O}$ the reported frequencies are $(2285,2265),{ }^{3 g}(2240$, 2228), ${ }^{3 g}$ and $2288,{ }^{11 c}$ for gas, solid and liquid phase measurements, respectively, and so close agreement is not expected.

We have recently carried out a fairly detailed analysis of the calculated IR frequencies and intensities for the $\mathrm{C}=\mathrm{C}=\mathrm{O}$ asymmetric stretch of ketenes, ${ }^{1 f}$ and find that for ketenes the calculated frequencies are also in reasonable agreement with experimentally determined values. It had been proposed ${ }^{10 c}$ that for ketenes there is a correlation of frequencies with the substituent field and resonance parameters F and R, but we found the relationship: $v / \mathrm{cm}^{1}=2119+91(\pm 13) F$ $-6(\pm 9) R, r=0.87$. Thus the correlation with the reasonance parameter R is not significant. For the isocyanates the corresponding correlation at the $\mathrm{HF} / 6-31 \mathrm{G}^{*}$ level is $v / \mathrm{cm}^{-1}=$ $2281(\pm 23)-106(\pm 39) F+65(\pm 25) R, r=0.68$. This is a very weak correlation, and while the isocyanates do show some dependence on the parameter R, the dependence on the field parameters F is of the opposite sign to that for ketenes. The ketene frequencies span a range from $2186 \mathrm{~cm}^{-1}$ for $\mathrm{O}_{2} \mathrm{NCH}=\mathrm{C}=\mathrm{O}$ to $2010 \mathrm{~cm}^{1}$ for $\mathrm{NaCH}=\mathrm{C}=\mathrm{O}$, and a plot of isocyanate vs. ketene frequencies reveals no useful correlation, and there is only a very modest correlation of isocyanate and ketene intensities ($I_{\mathrm{isoc}}=1.12 I_{\mathrm{ket}}+368, r=0.70$). Allene and
diazomethane cumulene group frequencies and intensities have also been studied, and show only poor correlations with the corresponding values for ketenes, ${ }^{1 d}$ and the same holds true for comparisons of the former groups to isocyanates. Thus the calculations indicate that the effect of substituents on the asymmetric stretching vibrations of different cumulenes show major differences, and that each group must be considered separately. As pointed out by a referee the polarities of isocyanates, with two strongly electronegative atoms, are intrinsically different from those of the other cumulenes. Thus the different behaviour of isocyanates is not unexpected.

Experimental studies of the substituent effect on the integrated intensities of the asymmetric stretch of isocyanates have been reported, ${ }^{12}$ and it was proposed ${ }^{12 a}$ that correlations for $4-\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NC}=\mathrm{C}=\mathrm{O}$ gave a positive dependence on σ_{p}^{+}, so that the intensities increased for electron-withdrawing substituents. No evidence for this trend is found in the current study.

In summary $a b$ initio calculations at the MP2/6-31G*// MP2/6-31G* and the HF/6-31G*//HF/6-31G* levels are quite useful in the understanding of the properties of substituted imines and isocyanates, and give structures which are in good agreement with available experimental values. The isodesmic stabilization energies of substituted imines compared with alkenes are correlated with substituent group electronegativity values. The corresponding isodesmic substituent effects on isocyanates give excellent correlations when compared with either imines or alkenes, and cover very large spans in isodesmic stabilization energies, particularly for the comparison with alkenes. These variations are much larger than those found for ketenes, diazomethanes, and allenes, and are attributed to the greater polar character of the isocyanates. The slopes of the SE $v s . \chi_{\mathrm{BE}}$ plots are correlated with the HOMO coefficients of the atom of attachment of the cumulene to the substituent. Mulliken and natural bond orbital atomic charges for isocyanates and imines follow the same trends, but the latter are better correlated with other molecular properties, as found previously for other cumulenes and related species.

Acknowledgements

Financial support by the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References

1 (a) L. Gong, M. A. McAllister and T. T. Tidwell, J. Am. Chem. Soc., 1991, 113, 6021; (b) M. A. McAllister and T. T. Tidwell, J. Am. Chem. Soc., 1992, 114, 5263; (c) M. A. McAllister and T. T. Tidwell, J. Am. Chem. Soc., 1994, 116, 7233; (d) M. A. McAllister and T. T. Tidwell, J. Org. Chem., 1994, 59, 4506; (e) M. A. McAllister and T. T. Tidwell, J. Am. Chem. Soc., 1992, 114, 6553; (f) M. A. McAllister and T. T. Tidwell, Can. J. Chem., 1994, 72, 882.
2 (a) K. B. Wiberg, J. Org. Chem., 1991, 56, 544; (b) K. B. Wiberg and K. E. Laidig, J. Org. Chem., 1992, 57, 5092; (c) K. B. Wiberg and P. R. Rablen, J. Am. Chem. Soc., 1993, 115, 9234; (d) K. B. Wiberg, C. M. Hadad, P. R. Rablen and J. Cioslowski, J. Am. Chem. Soc., 1992, 114, 8644; (e) J. C. White, R. J. Cave and E. R. Davidson, J. Am. Chem. Soc., 1988, 110, 6308; (f) F. Bernardi, A. Bottini, G. S. Valli and A. Venturnini, Gazz. Chim. Ital., 1990, 120, 301.
3 (a) H.-G. Mack, H. Oberhammer and C. O. D. Vedova, J. Mol. Struct., 1992, 265, 359; (b) V. Jonas and G. Frenking, Chem. Phys. Lett., 1991, 177, 175; (c) H.-G. Mack and H. Oberhammer, Chem. Phys. Lett., 1989, 157, 436; (d) R. Destro, F. Merati and E. Ortoleva, Chem. Phys. Lett., 1988, 145, 193; (e) M. T. Nguyen, M. R. Hajnal, L. G. Vanquickenborne, T.-K. Ha and J. Stohner, J. Chem. Soc., Faraday Trans., 1993, 89, 2381; (f) M. Tang and X. Fu, Int. J. Quantum Chem., 1992, 42, 403; (g) J. F. Sullivan, H. L. Heusel, W. M. Zunic and J. R. Durig, Spectrochim. Acta, Part A, 1994, 50, 435; (h) T. Veszpremi, T. Pasinszki and M. Feher, J. Am. Chem. Soc., 1994, 116, 6303.

4 (a) K. Yamada, J. Mol. Spectrosc., 1980, 79, 323; (b) J. Koput. J. Mol. Spectrosc., 1986, 115, 131; (c) M. C. L. Gerry, J. C. Thompson and R. M. Sugden, Nature (London), 1966, 211, 846; (d) C. Glidewell, A. G. Robiette and G. M. Sheldrick, Chem. Phys. Lett., 1972, 16, 526; (e) A. J. Careless, M. C. Green and H. W. Kroto, Chem. Phys. Lett., 1972, 16, 414; (f) W. H. Hocking and M. C. L. Gerry, J. Mol. Spectrosc., 1976, 59, 338; (g) C. Kirby and H. W. Kroto, J. Mol. Spectrosc., 1978, 70, 216; (h) J. R. Durig, R. J. Berry and C. J. Wurrey, J. Am. Chem. Soc., 1988, 110, 718; (i) J. Brunvoll, I. Hargittai and R. Seip, J. Chem. Soc., Dalton Trans., 1978, 299; (j) A. Bouchy and G. Roussy, J. Mol. Spectrosc., 1977, 68, 156; (k) D. E. Giles in The Chemistry of Cyanates and their Thio Derivatives, ch. 12, ed. S. Patai, Wiley, New York, 1977; (l)A. R. Katritzky, H. J. Keogh, S. Ohlenrott and R. D. Topsom, J. Am. Chem. Soc., 1970, 92, 6855; (m) J. A. Duckett, A. G. Robiette and I. M. Mills, J. Mol. Spectrosc., 1976, 62, 34; (n) G. C. Levy and R. L. Lichter, Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy, Wiley-Interscience, New York, 1979, p. 74; (o) K. F. Chew, W. Derbyshire, N. Logan, A. H. Norbury and A. I. P. Sinha, Chem. Commun., 1970, 1708; (p) I. Yavari, J. S. Staral and J. D. Roberts, Org. Magn. Reson., 1979, 12, 340.
5 (a) P. v. R. Schleyer, Pure Appl. Chem., 1987, 59, 1647; (b) R. J. Boyd and K. E. Edgecombe, J. Am. Chem. Soc., 1988, 110, 4182; (c) R. J. Boyd and S. L. Boyd, J. Am. Chem. Soc., 1992, 114, 1652.
6 (a) R. Pearson Jr. and F. J. Lovas, J. Chem. Phys., 1977, 66, 4149; (b) Y. Amatatsu, Y. Hamada and M. Tsuboi, J. Mol. Spectrosc., 1988, 129, 364; (c) M. Sugie, H. Takeo and C. Matsumura, J. Am. Chem. Soc., 1989, 111, 906; (d) K. V. L. N. Sastry and R. F. Curl Jr., J. Chem. Phys., 1964, 41, 77; (e) R. J. Doyle Jr. and J. E. Campana, J. Phys. Chem., 1985, 89, 4251; (f) S. Lacombe, B. Pellerin, J. C. Guillemin, J. M. Denis and G. Pfister-Guillouzo, J. Org. Chem., 1989, 54, 5958; (g) H. Bock and R. Dammel, Chem. Ber., 1987, 120, 1961; (h) I. N. Levine, J. Chem. Phys., 1963, 38, 2326.
7 (a) K. B. Wiberg, P. R. Rablen and M. Marquez, J. Chem. Soc., 1992, 114, 8654; (b) P. v. R. Schleyer and D. Kost, J. Am. Chem. Soc., 1988, 110, 2105; (c) M. W. Schmidt, P. N. Truong and M. S. Gordon, J. Am. Chem. Soc., 1987, 109, 5217; (d) J. C. Tai, L. Yang and N. L. Allinger, J. Am. Chem. Soc., 1993, 115, 11906; (e) J. Kao, J. Comput. Chem., 1988, 9, 905; (f) M. Kontoyianni, A. J. Hoffman and J. P. Bowen, J. Comput. Chem., 1992, 13, 57; (g) R. D. Bach and G. J. Wolber, J. Org. Chem., 1982, 47, 239; (h) D. R. Armstrong and G. T. Walker, J. Mol. Struct. (Theochem), 1986, 137, 235; (i) D. R. Armstrong and G. T. Walker, J. Mol. Struct. (Theochem), 1987, 149, 369; (j) Y. N. Panchenko, G. R. De Mare and C. W. Bock, J. Mol. Struct., 1992, 272, 161; (k) H.-G. Mack, B. Steger and H. Oberhammer, Chem. Phys. Lett., 1986, 129, 582; (l) R. D. Bach, J. J. W. McDouall, A. L. Owensby, H. B. Schlegel, J. W. Holubka and J. C. Ball, J. Phys. Org. Chem., 1991, 4, 125; (m) S. M. Bachrach and M. Liu, J. Org. Chem., 1992, 57, 209; (n) K. Akagi, Y. Tanabe and T. Yamabe, J. Mol. Struct., 1983, 102, 103; (o) R. Glaser and A. Streitwieser, J. Org. Chem., 1991, 56, 6612.
8 (a) M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill,
M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, GAUSSIAN 92, Gaussian Inc., Pittsburgh, PA, 1992; (b) W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, WileyInterscience, New York, 1987; (c) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213.
9 (a) R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833; 1841; 2338; 2343; (b) A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735; (c) A. E. Reed and F. Weinhold, J. Chem. Phys., 1985, 83, 1736; (d) F. P. Cossio, A. Arrieta, B. Lecea and J. M. Ugalde, J. Am. Chem. Soc., 1994, 116, 2085; (e) D. M. Birney, J. Org. Chem., 1994, 59, 2557.
10 (a) T. T. Tidwell, Ketenes, Wiley Interscience, in press; (b) D. LinVien, N. B. Colthup, W. G. Fateley and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, London, 1991; (c) J. E. Gano and E. J. Jacob, Spectrochim. Acta, Part A, 1987, 43, 1023.
11 (a) W. H. T. Davison, J. Chem. Soc., 1953, 3712; (b) J. Goubeau and H. Gräbner, Chem. Ber., 1960, 93, 1370; (c) R. P. Hirschmann, R. N. Kniseley and V. A. Fassel, Spectrochim. Acta, 1965, 21, 2125; (d) J. R. Durig, K. J. Kanes and J. F. Sullivan, J. Mol. Struct., 1983, 99, 61: (e) J. R. Durig, K. S. Kalasinsky and V. F. Kalasinsky, J. Chem. Phys., 1978, 69, 918; (f) G. G. Flaskerud, K. E. Pullen and J. M. Shreeve, Inorg. Chem., 1969, 8, 728; (g) D. W. H. Rankin and S. J. Cyvin, J. Chem. Soc., Dalton Trans., 1972, 1277; (h) D. A. Barr and R. N. Haszeldine, J. Chem. Soc., 1956, 3428; (i) W. J. Middleton, J. Org. Chem., 1983, 48, 3845; (j) H. Hoyer, Chem. Ber., 1956, 89, 2677; (k) I. Jaafar, G. Francis, R. Danion-Bougot and D. Danion, Synthesis, 1994, 56; (l) E. Mayer, Monatsh. Chem., 1970, 101, 834; (m) W. H. Hocking, M. C. L. Gerry and G. Winnewisser, Can. J. Phys., 1975, 53, 1869; (n) R. F. Curl Jr., V. M. Rao, K. V. L. N. Sastry and J. A. Hodgeson, J. Chem. Phys., 1963, 39, 3335; (o) W. J. Balfour, S. G. Fougere, D. Klapstein and W. M. Nau, J. Mol. Struct., 1993, 299, 21; (p) D. Klapstein and W. M. Nau, J. Mol. Struct., 1994, 317, 59; (q) D. Klapstein and W. M. Nau, Spectrochim. Acta, Part A, 1994, 50 , 307; (r) J. F. Sullivan, S. K. Nandy, M. J. Lee and J. R. Durig, J. Mol. Struct., 1992, 266, 271; (s) K. Schwetlik, R. Noack and F. Stebner, J. Chem. Soc., Perkin Trans. 2, 1994, 599; (t) M. D. Colle, G. Distefano, D. Jones, A. Guerrino, G. Seconi and A. Modelli, J. Chem. Soc., Perkin Trans. 2, 1994, 789.

12 (a) S. Stankovsky and S. Kovac, Chem. Zvesti, 1974, 28, 247 (Chem. Abstr., 1974, 81, 49112z); (b) N. F. Smirnova, Yu. I. Mushkin, A. I. Finkel'shtein and B. M. Tsigin, Zh. Prikl. Spectrosk., 1972, 17, 118 (Chem. Abstr., 1972, 77, 120439m)

Paper 4/01579G
Received 14th March 1994 Accepted 6th July 1994

